Learn More
Head lifting and other aspects of the appetitive central motive state that precedes consummatory feeding movements in Aplysia is promoted by excitation of the C-PR neuron. Food stimuli activate C-PR as well as a small population of cerebral-buccal interneurons (CBIs). We wished to determine if firing of C-PR produced differential effects on the various CBIs(More)
Three cerebral-abdominal interneurons (CAIs), CC2, CC3, and CC7, were identified in the cerebral ganglion C cluster. The cells send their axons to the abdominal ganglion via the pleural-abdominal connective. CC2 and CC3 are bilaterally symmetrical cells, whereas CC7 is a unilateral cell. CC3 is immunopositive for serotonin and may be the same cell (CB-1)(More)
Previous results have indicated that the bilateral cerebral interneuron CC5 mediates the pedal artery shortening that is a component of defensive withdrawal responses involving the head. Current studies suggest that CC5 contributes to aspects of at least six different behaviors: locomotion, head turning, defensive head withdrawal, local tentacular(More)
The present study using autoradiography to determine the location of the projections of presumptive peripheral afferent neurons into the central nervous system of Aplysia. Selected peripheral tissues (with an emphasis on structures involved in feeding behavior) were exposed to radioactive amino acids, and the distribution of macromolecules transported into(More)
Cerebral neuron C-PR is thought to play an important role in the appetitive phase of feeding behavior of Aplysia. Here, we describe the organization of input and output pathways of C-PR. Intracellular dye fills of C-PR revealed extensive arborization of processes within the cerebral and the pedal ganglia. Numerous varicosities of varying sizes may provide(More)
A combination of biocytin back-fills of the cerebral-buccal connectives and immunocytochemistry of the cerebral ganglion demonstrated that of the 13 bilateral pairs of cerebral-buccal interneurons in the cerebral ganglion, a subpopulation of 3 are immunopositive for the peptide myomodulin. The present paper describes the properties of two of these cells,(More)
A bilateral pair of cerebral interneurons, called CC5, contribute to the generation of a number of different behaviors involving head movements. Each cell sends its axon to the ipsilateral and contralateral pedal and pleural ganglia. A weak tactile stimulus to the head excites the ipsilateral CC5; a strong stimulus excites both the ipsilateral and(More)
The controls of somatic and autonomic functions often appear to be organized into antagonistic systems. This issue was explored in the bilaterally paired C cluster neuron, CC6, which was found to have properties that suggested that it might function antagonistically to the previously identified multiaction neuron, CC5. Similar to CC5, CC6 is an(More)
Seaweed applied to the head of Aplysia elicits a head turning response in the direction of the stimulus. The major motor neurons involved in head turning appear to be located largely in the pedal ganglion. Using an autoradiographic technique, we obtained evidence that there are afferents in the skin of the head that project directly to the pedal ganglion by(More)
Exposure to high sustained positive acceleration (+Gz) is known to have a pathophysiological effect on the heart of the rat. As critical regulators of cardiac myocyte survival and death, mitochondria may be crucially involved in +Gz-induced pathogenesis. It was, therefore, of interest to investigate myocardial mitochondrial ultrastructure, respiratory(More)
  • 1