Learn More
Fluorescent Ⅱ-Ⅳ Quantum dots (QDs) have demonstrated to be highly promising biological probes for various biological and biomedical applications due to their many attractive merits, such as robust photostabilty, strong photoluminescence, and size-tunable fluorescence. Along with wide ranging bioapplications, concerns about their biosafety have attracted(More)
Near-infrared (NIR) hyperthermia agents are of current interest because they hold great promise as highly efficacious tools for cancer photothermal therapy. Although various agents have been reported, a practical NIR hyperthermia agent is yet unavailable. Here, we present the first demonstration that silicon nanomaterials-based NIR hyperthermia agent, that(More)
A class of stem-loop DNA-assisted silicon nanowires (SiNWs)-based fluorescent biosensor is presented in this report. Significantly, the sensor enables rapid and sensitive detection of DNA targets with a concentration as low as 1 pM. Moreover, the large planar surface of SiNWs facilitates simultaneous assembly with different DNA strands, which is favorable(More)
Fluorescent silicon quantum dots (SiQDs) are facilely prepared via one-pot microwave-assisted synthesis. The as-prepared SiQDs feature excellent aqueous dispersibility, robust photo- and pH-stability, strong fluorescence, and favorable biocompatibility. Experiments show the SiQDs are superbly suitable for long-term immunofluorescent cellular imaging. Our(More)
Over the past two decades, fluorescent quantum dots (QDs) have been highly attractive for a myriad of bioapplications due to their unique optical properties. For bioimaging applications, QD-based in vivo specific tumour targeting is vitally important in the biological and biomedical fields. Aqueous synthesized QDs (aqQDs) exhibit excellent aqueous(More)
Near-infrared (NIR, 700-900 nm) fluorescent nanomaterials-based probes have shown major impacts on high-resolution and high-sensitivity bioimaging applications. Typically, NIR-emitting quantum dots (QDs) are highly promising as NIR bioprobes due to their unique optical properties. However, NIR-emitting QDs-related in vivo behavior remains unknown at(More)
Lung cancer is the leading cause of cancer death worldwide. Its early detection is of paramount importance for diagnosis, classification, treatment, and improvement of survivorship. However, current methods are not sensitive enough to detect lung cancer in its nascent stage. We reported an aptamer-Ag-Au shell-core nanostructure-based surface-enhanced Raman(More)
Near-infrared (NIR, 700-900 nm) fluorescent quantum dots are highly promising as NIR bioprobes for high-resolution and high-sensitivity bioimaging applications. In this article, we present a class of NIR-emitting CdTe/CdS/ZnS core-shell-shell quantum dots (QDs), which are directly prepared in aqueous phase via a facile microwave synthesis. Significantly,(More)