Learn More
Here, we show that miR-515-5p inhibits cancer cell migration and metastasis. RNA-seq analyses of both oestrogen receptor receptor-positive and receptor-negative breast cancer cells overexpressing miR-515-5p reveal down-regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR-515-5p inhibits MARK4 directly 3' UTR interaction and(More)
Cetyltrimethylammonim bromide coated gold nanorods (Au NRs) has a potential to become anti-cancer nano-drugs. Previously, the comparative responses of human alveolar adenocarcinoma epithelial cells (A549) and normal bronchial epithelial cells (16HBE) exposed to Au NRs have been characterized. It has been shown that Au NRs are translocated from the lysosome(More)
Polymer-nanoparticle-encapsulated doxorubicin (DOX) and paclitaxel (TAX) have the potential for novel therapeutic use against cancer in the clinic. However, the systemic biological effect of the nanoparticle material, namely, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA), and its encapsulated drugs have not been fully studied. We have(More)
Amphiphilic copolymer nanoparticle-encapsulated multi-target chemotherapeutic drugs have attracted considerable attention due to their favorable drug efficiency and potential application prospect. Studies have shown that an amphiphilic copolymer, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) modified with ε-polylysine, and encapsulated with(More)
Epidermal growth factor receptor (EGFR) inhibitors such as erlotinib are novel effective agents in the treatment of EGFR-driven lung cancer, but their clinical impact is often impaired by acquired drug resistance through the secondary T790M EGFR mutation. To overcome this problem, we analysed the metabonomic differences between two independent pairs of(More)
The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen,(More)
  • 1