Learn More
This paper introduces the development of a practical brain-computer interface at Tsinghua University. The system uses frequency-coded steady-state visual evoked potentials to determine the gaze direction of the user. To ensure more universal applicability of the system, approaches for reducing user variation on system performance have been proposed. The(More)
R ecently, electroencephalogram (EEG)-based brain– computer interfaces (BCIs) have become a hot spot in the study of neural engineering, rehabilitation, and brain science. In this article, we review BCI systems based on visual evoked potentials (VEPs). Although the performance of this type of BCI has already been evaluated by many research groups through a(More)
Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of(More)
A brain-computer interface(BCI) based on motor imagery (MI) translates the subject's motor intention into a control signal through classifying the electroencephalogram (EEG) patterns of different imagination tasks, e.g. hand and foot movements. Characteristic EEG spatial patterns make MI tasks substantially discriminable. Multi-channel EEGs are usually(More)
Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP speller with a computer(More)
This paper presents an algorithm for classifying single-trial electroencephalogram (EEG) during the preparation of self-paced tapping. It combines common spatial subspace decomposition with Fisher discriminant analysis to extract features from multichannel EEG. Three features are obtained based on Bereitschaftspotential and event-related desynchronization.(More)
A brain computer interface (BCI) translates human intentions into control signals to establish a direct communication channel between the human brain and external devices. Because a BCI does not depend on the brain's normal output pathways of peripheral nerves and muscles, it can provide a new communication channel to people with severe motor disabilities.(More)
Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human(More)
Over the past several decades, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have attracted attention from researchers in the field of neuroscience, neural engineering, and clinical rehabilitation. While the performance of BCI systems has improved, they do not yet support widespread usage. Recently, visual and auditory BCI systems have(More)
Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI(More)