Learn More
Interstitial cells of Cajal (ICC) generate the electrical slow wave required for normal gastrointestinal motility. The ionic conductances expressed in human intestinal ICC are unknown. The aim of this study was to determine expression of a Na+ current in human intestinal ICC and to determine the effects of the Na+ current on the slow wave. Visually(More)
Tetrodotoxin-resistant Na+currents are expressed in a variety of muscle cells including human jejunal circular smooth muscle (HJCSM) cells. The aim of this study was to determine the molecular identity of the pore-forming alpha-subunit of the HJCSM Na+ channel. Degenerate primers identified a cDNA fragment of 1.5 kb with 99% nucleotide homology with human(More)
BACKGROUND & AIMS Sodium channels are key regulators of neuronal and muscle excitability. However, sodium channels have not been definitively identified in gastrointestinal smooth muscle. The aim of the present study was to determine if a Na(+) current is present in human jejunal circular smooth muscle cells. METHODS Currents were recorded from freshly(More)
Four major morphologically distinct classes of cells were identified within the adult rabbit meniscus using antibodies to cytoskeletal proteins. Two classes of cell were present in the fibrocartilage region of the meniscus. These meniscal cells exhibited long cellular processes that extended from the cell body. A third cell type found in the inner(More)
A mechanosensitive Na(+) current carried by Na(v)1.5 is present in human intestinal circular smooth muscle and contributes to regulation of intestinal motor function. Expression of this channel in different species is unknown. Our aim was to determine if Na(+) currents and message for the alpha subunit of the Na(+) channel (SCN5A) are found in circular(More)
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine(More)
T-type Ca(2+) currents have been detected in cells from the external muscular layers of gastrointestinal smooth muscles and appear to contribute to the generation of pacemaker potentials in interstitial cells of Cajal from those tissues. However, the Ca(2+) channel alpha subunit responsible for these currents has not been determined. We established that the(More)
K(+) currents are known to regulate the excitability of corpus cavernosum myocytes and therefore to play a role in the control of penile erection and detumescence. We used electrophysiology and molecular cloning techniques to identify ion channel proteins that contribute to K(+) currents in rabbit cavernosal myocytes. Currents were recorded from freshly(More)