Learn More
Interstitial cells of Cajal (ICC) generate the electrical slow wave required for normal gastrointestinal motility. The ionic conductances expressed in human intestinal ICC are unknown. The aim of this study was to determine expression of a Na+ current in human intestinal ICC and to determine the effects of the Na+ current on the slow wave. Visually(More)
BACKGROUND & AIMS Sodium channels are key regulators of neuronal and muscle excitability. However, sodium channels have not been definitively identified in gastrointestinal smooth muscle. The aim of the present study was to determine if a Na(+) current is present in human jejunal circular smooth muscle cells. METHODS Currents were recorded from freshly(More)
SCN5A encodes the alpha subunit of the cardiac muscle and intestinal smooth muscle mechanosensitive Na(+) channel. Mechanosensitivity in the intestine requires an intact cytoskeleton. We report, using laser capture microdissection, single cell PCR, and immunohistochemistry, that syntrophins, scaffolding proteins, were expressed in human intestinal smooth(More)
K(+) currents are known to regulate the excitability of corpus cavernosum myocytes and therefore to play a role in the control of penile erection and detumescence. We used electrophysiology and molecular cloning techniques to identify ion channel proteins that contribute to K(+) currents in rabbit cavernosal myocytes. Currents were recorded from freshly(More)
A Na(+) current is present in human jejunal circular smooth muscle cells. The aim of the present study was to determine the role of the cytoskeleton in the regulation of the Na(+) current. Whole cell currents were recorded by using standard patch-clamp techniques with Cs(+) in the pipette to block K(+) currents. Cytochalasin D and gelsolin were used to(More)
Smooth muscle exhibits mechanosensitivity independent of neural input, suggesting that mechanosensitive pathways reside within smooth muscle cells. The native L-type calcium current recorded from human intestinal smooth muscle is modulated by stretch. To define mechanosensitive mechanisms involved in the regulation of smooth muscle calcium entry, we cloned(More)
BACKGROUND & AIMS Interstitial cells of Cajal (ICC) are required for normal gastrointestinal motility. Loss of ICC is associated with several motility disorders. The mechanisms modulating ICC survival and proliferation are poorly understood. This study aimed to establish whether 5-hydroxytryptamine (5-HT) plays a role in regulating ICC proliferation. (More)
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine(More)
T-type Ca(2+) currents have been detected in cells from the external muscular layers of gastrointestinal smooth muscles and appear to contribute to the generation of pacemaker potentials in interstitial cells of Cajal from those tissues. However, the Ca(2+) channel alpha subunit responsible for these currents has not been determined. We established that the(More)