Yiheng Duan

Learn More
Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical(More)
Current memory forensic methods mainly focus on evidence collection and data recovery. A little work is about how to automatically identify malwares from many unknown processes and analyze their behaviors in high semantic level so as to collect related evidences. In fact, in real cases, investigators are often faced with large number of processes that they(More)
We propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon(More)
We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of g_{sp}^{(2)}=4.4(5) between the(More)
We demonstrate cavity cooling of all motional degrees of freedom of an atomic ensemble using light that is far detuned from the atomic transitions by several gigahertz. The cooling is achieved by cavity-induced frequency-dependent asymmetric enhancement of the atomic emission spectrum, thereby extracting thermal kinetic energy from the atomic system. Within(More)
  • 1