Learn More
CRISPR/Cas (clustered regularly interspaced palindromic repeats/CRISPR-associated) systems are a bacterial defence against invading foreign nucleic acids derived from bacteriophages or exogenous plasmids. These systems use an array of small CRISPR RNAs (crRNAs) consisting of repetitive sequences flanking unique spacers to recognize their targets, and(More)
We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is(More)
The capsule of N. meningitidis serogroup B, (alpha2-->8)-linked polysialic acid and the capsules of other meningococcal serogroups and of other gram-negative bacterial pathogens are anchored in the outer membrane through a 1,2-diacylglycerol moiety. Previous work on the meningococcal cps complex in Escherichia coli K-12 indicated that deletion of genes(More)
Neisseria meningitidis expresses a heterogeneous population of lipooligosaccharide (LOS) inner cores variously substituted with alpha1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine (PEA), as well as glycine, attached to HepII. Combinations of these attachments to the LOS inner core represent immunodominant epitopes that are being(More)
Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalysed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome(More)
Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously(More)
Cationic antimicrobial peptides (CAMPs) are important components of the innate host defense system against microbial infections and microbial products. However, the human pathogen Neisseria meningitidis is intrinsically highly resistant to CAMPs, such as polymyxin B (PxB) (MIC > or = 512 microg/ml). To ascertain the mechanisms by which meningococci resist(More)
Meningococcal lipopoly(oligo)saccharide (LOS) is a major inflammatory mediator of fulminant meningococcal sepsis and meningitis. Highly purified wild-type meningococcal LOS and LOS from genetically defined mutants of Neisseria meningitidis that contained specific mutations in LOS biosynthesis pathways were used to confirm that meningococcal LOS activation(More)
Neisseria meningitidis serogroup A capsular polysaccharide (CPS) is composed of a homopolymer of O-acetylated, alpha1-->6-linked ManNAc 1-phosphate that is distinct from the capsule structures of the other meningococcal disease-causing serogroups, B, C, Y, and W-135. The serogroup A capsule biosynthetic genetic cassette consists of four open reading frames,(More)
Single-stranded oligonucleotides stabilize highly fluorescent Ag nanoclusters, with emission colors tunable via DNA sequence. We utilized DNA microarrays to optimize these scaffold sequences for creating nearly spectrally pure Ag nanocluster fluorophores that are highly photostable and exhibit great buffer stability. Five different nanocluster emitters have(More)