Learn More
— Motion sensing has played an important role in the study of human biomechanics as well as the entertainment industry. Although existing technologies, such as optical or inertial based motion capture systems, have relatively high accuracy in detecting body motions, they still have inherent limitations with regards to mobility and wearability. In this(More)
Wearable soft sensing suit for human gait measurement. Abstract Wearable robots based on soft materials will augment mobility and performance of the host without restricting natural kinematics. These wearable robots will need wearable soft sensors to monitor the movement of the wearer and robot outside the lab. Until now wearable soft sensors have not(More)
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired(More)
—The ability to measure human hand motions and interaction forces is critical to improving our understanding of manual gesturing and grasp mechanics. This knowledge serves as a basis for developing better tools for human skill training and rehabilitation, exploring more effective methods of designing and controlling robotic hands, and creating more(More)
— This paper presents analysis and results for a small and agile wall climbing robot's ability to regain lost adhesion due to degradation of dry fibrillar adhesives. To regain the lost adhesion, two feet are set to the surface and the robot performs a rocking motion on the side where the adhesion has dropped below a safety threshold. The rocking motion(More)
This paper presents the design and optimization of a wall-climbing robot along with the incorporation of autonomous adhesion recovery and a motion planning implementation. The result is Waalbot II, an untethered 85 g robot able to climb on smooth vertical surfaces with up to a 100 g payload (117% body mass) or, when unburdened, on planar surfaces of any(More)
  • 1