Yigal Koltin

Learn More
Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores(More)
There are a number of yeasts that secrete killer toxins, i.e., proteins lethal to sensitive cells of the same or related species. Ustilago maydis, a fungal pathogen of maize, also secretes killer toxins. The best characterized of the U. maydis killer toxins is the KP6 toxin, which consists of two small polypeptides that are not covalently linked. In this(More)
The chsB gene from Aspergillus nidulans encodes a class III chitin synthase, an enzyme class found in filamentous fungi but not in yeast-like organisms. Using a novel method, we isolated haploid segregants carrying a disrupted chsB allele from heterozygous diploid disruptants. The haploid disruptants grow as minute colonies that do not conidiate. Hyphae(More)
Candida albicans is not inhibited by a number of drugs known to affect fungal cells. The basis for this resistance in most cases is unknown but has been attributed to the general impermeability of the fungal cell envelope. A gene (BENr) formerly shown to be responsible for the resistance of C. albicans to benomyl and methotrexate was shown in the present(More)
Killer toxins are polypeptides secreted by some fungal species that kill sensitive cells of the same or related species. In the best-characterized cases, they function by creating new pores in the cell membrane and disrupting ion fluxes. Immunity or resistance to the toxins is conferred by the preprotoxins (or products thereof) or by nuclear resistance(More)
The ura-blaster technique for the disruption of Candida albicans genes has been employed in a number of studies to identify possible genes encoding virulence factors of this fungal pathogen. In this study, the URA3-encoded orotidine 5'-monophosphate (OMP) decarboxylase enzyme activities of C. albicans strains with ura-blaster-mediated genetic disruptions(More)
The BENr gene of Candida albicans, which confers resistance on susceptible strains of Saccharomyces cerevisiae to six structurally and functionally unrelated drugs, was described recently (R. Ben-Yaacov, S. Knoller, G. Caldwell, J. M. Becker, and Y. Koltin, Antimicrob. Agents Chemother. 38:648-652, 1994). This gene bears similarity to membrane proteins(More)
Ustilago maydis is a fungal pathogen of maize. Some strains of U. maydis encode secreted polypeptide toxins capable of killing other susceptible strains of U. maydis. We show here that one of these toxins, the KP6 killer toxin, is synthesized by transgenic tobacco plants containing the viral toxin cDNA under the control of a cauliflower mosaic virus(More)
The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or(More)