Yigal Burstein

Learn More
i ii The thesis is dedicated to my favorite autonomous agent Dana, and her mother Dorit. iii iv Acknowledgments I would like to express my deepest gratitude to my supervisors Yishai Feldman and Amiram Yehudai. Yishai's infinite patience, infinitely-high standards, and systematic approach, still amaze me after the many years I have been working with him.(More)
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100)(More)
Analysis of the three-dimensional structures of two closely related thermophilic and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Entamoeba histolytica (EhADH1) and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro275) at the center of the dimerization interface might(More)
The principal goal of the Israel Structural Proteomics Center (ISPC) is to determine the structures of proteins related to human health in their functional context. Emphasis is on the solution of structures of proteins complexed with their natural partner proteins and/or with DNA. To date, the ISPC has solved the structures of 14 proteins, including two(More)
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) catalyzes the reversible oxidation of secondary alcohols to the corresponding ketones using NADP(+) as the cofactor. The active site of the enzyme contains a zinc ion that is tetrahedrally coordinated by four protein residues. The enzymatic reaction leads to the formation of a ternary(More)
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) is a zinc-dependent NADP(+)/H-linked class enzyme that reversibly catalyzes the oxidation of secondary alcohols to their corresponding ketones. Cobalt substitution studies of other members of the alcohol dehydrogenase (ADH) family showed that the cobalt-containing ADHs have a similar active site(More)
  • 1