Learn More
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized(More)
Li−air is a novel battery technology with the potential to offer very high specific energy, but which currently suffers from a large charging overpotential and low power density. In this work, we use ab initio calculations to demonstrate that a facile mechanism for recharging Li2O2 exists. Rather than the direct decomposition pathway of Li2O2 into Li and O2(More)
The continued drive for high performance lithium batteries has imposed stricter requirements on the electrolyte materials. Solid electrolytes comprising lithium super ionic conductor materials exhibit good safety and stability and are promising to replace current organic liquid electrolytes. One major limitation in the application of Li-ion conductors is(More)
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically(More)
Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these(More)
The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific energy. However, this new battery technology is facing substantial challenges, such as a high overpotential upon charging, poor reversibility, and low power density. Using first-principles calculations, we study the oxygen evolution reaction (OER) on(More)
All-solid-state Li-batteries using solid-state electrolytes (SSEs) offer enhanced safety over conventional Li-ion batteries with organic liquid electrolytes due to the nonflammable nature of SSEs. The superior mechanical strength of SSEs can also protect against Li dendrite penetration, which enables the use of the highest specific capacity (3861 mAh/g) and(More)
The thermodynamic stability of materials can depend on particle size due to the competition between surface and bulk energy. In this Letter, we show that, while sodium peroxide (Na2O2) is the stable bulk phase of Na in an oxygen environment at standard conditions, sodium superoxide (NaO2) is considerably more stable at the nanoscale. As a consequence, the(More)
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been(More)