Learn More
It is possible that brain cortical function is mediated by dynamic modulation of coherent firing in groups of neurons. Indeed, a correlation of firing between cortical neurons, seen following sensory stimuli or during motor behaviour, has been described. However, the time course of modifications of correlation in relation to behaviour was not evaluated(More)
The study was designed to reveal occurrences of precise firing sequences (PFSs) in cortical activity and to test their behavioral relevance. Two monkeys were trained to perform a delayed-response paradigm and to open puzzle boxes. Extracellular activity was recorded from neurons in premotor and prefrontal areas with an array of six microelectrodes. An(More)
It was suggested previously that the transformation of action to muscle-based coding is completed in the primary motor cortex (M1). This is consistent with a predominant direct pathway leading from M1 to motoneurons. Accordingly, spinal segmental interneurons that are located downstream to M1 are expected to show muscle-like coding properties. We addressed(More)
The basal ganglia (BG) have been hypothesized to implement a reinforcement learning algorithm. However, it is not clear how information is processed along this network, thus enabling it to perform its functional role. Here we present three different encoding schemes of visual cues associated with rewarding, neutral, and aversive outcomes by BG neuronal(More)
Recent studies have shown that the local field potential (LFP) can provide a simple method for obtaining an accurate measure of reaching and saccade behaviors. However, it is not clear whether this signal is equally informative with respect to more complex movements. Here we recorded LFPs and single units (SUs) from different areas in the posterior parietal(More)
Preparatory changes in neural activity before the execution of a movement have been documented in tasks that involve an instructed delay period (an interval between a transient instruction cue and a subsequently triggered movement). Such preparatory activity occurs in many motor centres in the brain, including the primary motor cortex, premotor cortex,(More)
The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs), and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs), which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs), presumably(More)
Controlling motor actions requires online adjustments of time-varying parameters. Although numerous studies have attempted to identify the parameters coded in different motor sites, the relationships between the temporal profile of neuronal responses and the dynamics of motor behavior remain poorly understood in particular because motor parameters such as(More)
Visuomotor transformation is a fundamental process in executing voluntary actions. The final steps of this transformation are presumed to take place in the corticospinal (CS) system, yet the way in which the motor cortex (MC) interacts with spinal circuitry during this process is unclear. We studied neural correlates of visuomotor transformation in the MC(More)