Learn More
Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents,(More)
We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance,(More)
In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as approximately 60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule(More)
In the normal brain, tau protein is phosphorylated at a number of proline- and non-proline directed sites, which reduce tau microtubule binding and thus regulate microtubule dynamics. In Alzheimer disease (AD), tau is abnormally hyperphosphorylated, leading to neurofibrillary tangle formation and microtubule disruption, suggesting a loss of regulatory(More)
PURPOSE Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new(More)
Research into optical markerless human motion capture has attracted significant attention. However, the complexity of the human anatomy, ambiguities introduced by lacking full-perspective view data and noises involved in data processing make human motion capture a non-convex, multi-modal optimisation problem in high dimensional space. The proposed method(More)
Acknowledgements Thanks to Supervisors Rhys Hawkins and Dr. Henry Gadner for guidance of the project. Thanks to Ian Farrington for providing the useful information and access to the archaeological laboratory. Abstract The problem of reassembling archaeological artefacts from a collection of fragments that may include other fragments from several artefact(More)
The major issue in markerless motion capture is finding the global optimum from the multimodal setting where distinctive gestures may have similar likelihood values. Instead of only focusing on effective searching as many existing works, our approach resolves gesture ambiguity by designing a better-behaved observation likelihood. We extend Annealed Particle(More)
The powerful theory of compressive sensing enables an efficient way to recover sparse or compressible signals from non-adaptive, sub-Nyquist-rate linear measurements. We propose a compressive an-neal particle filter to exploit sparsity existing in image-based human motion tracking. Interestingly, it has been shown that random projections can well(More)