Learn More
Elastin enables the reversible deformation of elastic tissues and can withstand decades of repetitive forces. Tropoelastin is the soluble precursor to elastin, the main elastic protein found in mammals. Little is known of the shape and mechanism of assembly of tropoelastin as its unique composition and propensity to self-associate has hampered structural(More)
PURPOSE Here, we examined the development, composition, and structural organization of the ciliary zonule of the mouse. Fibrillin 1, a large glycoprotein enriched in force-bearing tissues, is a prominent constituent of the mouse zonule. In humans, mutations in the gene for fibrillin 1 (FBN1) underlie Marfan syndrome (MS), a disorder characterized by lens(More)
Tropoelastin, the polypeptide monomer precursor of elastin, is covalently cross-linked to give stable elastic structures. We show here that elastic biomaterials can be generated from tropoelastin in the absence of the classically accepted cross-linking pathway. Under alkaline conditions tropoelastin proceeds through a sol-gel transition leading to the(More)
PURPOSE Fibrillin-2 (Fbn2) is the dominant fibrillin isoform expressed during development of the mouse eye. To test its role in morphogenesis, we examined the ocular phenotype of Fbn2(-/-) mice. METHODS Ocular morphology was assessed by confocal microscopy using antibodies against microfibril components. RESULTS Fbn2(-/-) mice had a high incidence of(More)
Elastogenesis and elastin repair depend on the secretion of tropoelastin from the cell, yet cellular production is low in the many biological systems that have been studied. To address the apparent paradox of a paucity of tropoelastin for cell surface microassembly, we examined the effects of the glycosaminoglycans heparin, heparan sulfate, and chondroitin(More)
Tropoelastin assembly is a key step in the formation of elastin. We consider how nanoscale intracellular assemblies of tropoelastin can congregate in an extracellular environment to give microscale aggregates. We describe novel 200-300 nm spherical particles that serve as intermediates in the formation of the coacervate. Their aggregation gives 800 nm to 1(More)
Synthetic elastin hydrogels are useful tissue engineering scaffolds because they present cell binding sequences and display physical performance similar to that of human elastic tissue. Small pores and a low porosity can limit cellular penetration into elastin scaffolds. To overcome this problem, glycosaminoglycans were coblended with tropoelastin during(More)
Synthetic human tropoelastin was chemically cross-linked to form elastic hydrogel-like structures in vitro. Discrete stages were identified during elastic hydrogel formation by cross-linking tropoelastin with bis(sulfosuccinimidyl) suberate at a range of protein concentrations during this process. In the early stages of this process, particles with the same(More)
Alkaline tropoelastin solutions (pH 11) were optically clear at low temperatures, but a firm gel formed when the temperature was raised to 37 degrees C. Reversion to a clear solution took place if the temperature was lowered to below 20 degrees C within less than 2 h, but not if 37 degrees C was maintained for several hours. The precipitated elastin-like(More)
  • 1