Learn More
The small auxin up RNA (SAUR) genes were originally characterized in soybean, where they encode a set of unstable transcripts that are rapidly induced by auxin. In this report, the isolation of a SAUR gene, designated SAUR-AC1, from Arabidopsis thaliana (L.) Heynh. ecotype Columbia is described. The promoter of the SAUR-AC1 gene contains putative regulatory(More)
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of(More)
Plants respond to phosphate (Pi) starvation by exhibiting a suite of developmental, biochemical, and physiological changes to cope with this nutritional stress. To understand the molecular mechanism underlying these responses, we isolated an Arabidopsis (Arabidopsis thaliana) mutant, hypersensitive to phosphate starvation1 (hps1), which has enhanced(More)
• With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. • The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the(More)
The endoplasmic reticulum-associated degradation (ERAD) is a highly conserved mechanism to remove misfolded membrane/secretory proteins from the endoplasmic reticulum (ER). While many of the individual components of the ERAD machinery are well characterized in yeast and mammals, our knowledge of a plant ERAD process is rather limited. Here, we report a(More)
Calreticulin (CRT) is a highly conserved chaperone-like lectin that regulates Ca(2+) homeostasis and participates in protein quality control in the endoplasmic reticulum (ER). Most of our CRT knowledge came from mammalian studies, but our understanding of plant CRTs is limited. Many plants contain more than two CRTs that form two distinct groups: CRT1/CRT2(More)
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific(More)
  • 1