Learn More
BACKGROUND Long QT syndrome type 1 (LQT1) is a congenital disease arising from a loss of function in the slowly activating delayed potassium current IKs, which causes early afterdepolarizations (EADs) and polymorphic ventricular tachycardia (pVT). OBJECTIVE The purpose of this study was to investigate the mechanisms underlying pVT using a transgenic(More)
Ageing is associated with a blunted response to sympathetic stimulation and an increased risk of arrhythmia and sudden cardiac death. Aberrant calcium (Ca(2+)) handling is an important contributor to the electrical and contractile dysfunction associated with ageing. Yet, the specific molecular mechanisms underlying abnormal Ca(2+) handling in ageing heart(More)
RATIONALE Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane-related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca(2+)(More)
Two recent studies (Newton-Cheh, C. et al. (2009) Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399-406 and Pfeufer, A. et al. (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407-414) identified an association, with genome-wide significance, between a(More)
KCNQ1 and hERG encode the voltage-gated potassium channel α-subunits of the cardiac repolarizing currents I(Ks) and I(Kr), respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs), and loss-of-function mutations in these channels manifest clinically as long QT syndrome, characterized by the(More)
We recently showed that progesterone treatment abolished arrhythmias and sudden cardiac death in a transgenic rabbit model of long QT syndrome type 2 (LQT2). Moreover, levels of cardiac sarco(endo)plasmic reticulum Ca(2+)-ATPase type 2a (SERCA2a) were upregulated in LQT2 heart extracts. We hypothesized that progesterone treatment upregulated SERCA2a(More)
  • 1