Yiannis A. Savva

7Robert A Reenan
2Leila E Rieder
2James E C Jepson
Learn More
Adenosine (A)-to-inosine (I) RNA editing is a fundamental posttranscriptional modification that ensures the deamination of A-to-I in double-stranded (ds) RNA molecules. Intriguingly, the A-to-I RNA editing system is particularly active in the nervous system of higher eukaryotes, altering a plethora of noncoding and coding sequences. Abnormal RNA editing is(More)
Adenosine to inosine (A-to-I) RNA editing is a post-transcriptional process by which adenosines are selectively converted to inosines in double-stranded RNA (dsRNA) substrates. A highly conserved group of enzymes, the adenosine deaminase acting on RNA (ADAR) family, mediates this reaction. All ADARs share a common domain architecture consisting of a(More)
Select proteins involved in electrical and chemical neurotransmission are re-coded at the RNA level via the deamination of particular adenosines to inosine by adenosine deaminases acting on RNA (ADARs). It has been hypothesized that this process, termed RNA editing, acts to "fine-tune" neurophysiological properties in animals and potentially downstream(More)
Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as "junk DNA," that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear(More)
Loss of FMR1 gene function results in fragile X syndrome, the most common heritable form of intellectual disability. The protein encoded by this locus (FMRP) is an RNA-binding protein that is thought to primarily act as a translational regulator; however, recent studies have implicated FMRP in other mechanisms of gene regulation. We found that the(More)
Informational recoding by adenosine-to-inosine RNA editing diversifies neuronal proteomes by chemically modifying structured mRNAs. However, techniques for analyzing editing activity on substrates in defined neurons in vivo are lacking. Guided by comparative genomics, here we reverse-engineered a fluorescent reporter sensitive to Drosophila melanogaster(More)
Transcription of genetic information from archival DNA into RNA molecule working copies is vital for proper cellular function and is highly accurate. In turn, RNAs serve structural, enzymatic, and regulatory roles, as well as being informational templates for the ribosomal translation of proteins. Following RNA synthesis, maturing of RNA molecules occurs(More)
Adenosine-to-inosine RNA editing is a highly conserved process that post-transcriptionally modifies mRNA, generating proteomic diversity, particularly within the nervous system of metazoans. Transcripts encoding proteins involved in neurotransmission predominate as targets of such modifications. Previous reports suggest that RNA editing is responsive to(More)
  • Ryan J Schutte, Soleil S Schutte, Jacqueline Algara, Eden V Barragan, Jeff Gilligan, Cynthia Staber +4 others
  • 2014
Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile(More)