Yi-yu Lin

Learn More
This study evaluated the tumor targeting and therapeutic efficacy of a novel theranostic agent (131)I-labeled immuno-gold-nanoparticle ((131)I-C225-AuNPs-PEG) for high epidermal growth factor receptor (EGFR)-expressed A549 human lung cancer. Confocal microscopy demonstrated the specific uptake of C225-AuNPs-PEG in A549 cells. (131)I-C225-AuNPs-PEG induced a(More)
Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with(More)
UNLABELLED In our previous studies using combined radioisotopes with chemotherapeutic liposomal drugs (i.e., (111)In-labeled polyethylene glycol (PEG)ylated liposomal vinorelbine) we have reported possible therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this chemotherapy has a therapeutic effect as good(More)
Liposomes modified with a high concentration of polyethylene glycol (PEG) could significantly prolong the retention time of the carried drug in the circulation, thus improving the drug accumulation in the tumor. In this study, 6 mol% rather than 0.9 mol% PEGylated liposomes (100 nm in diameter) encapsulated with indium-111 were used in a human colorectal(More)
Nanoliposomes are important drug carriers that can passively target tumor sites by the enhanced permeability and retention (EPR) effect in neoplasm lesions. This study evaluated the biodistribution and pharmacokinetics of 111In-labeled vinorelbine (VNB)-encapsulated PEGylated liposomes (IVNBPL) after intraperitoneal (i.p.) and intravenous (i.v.)(More)
Colorectal carcinoma is a highly prevalent and common cause of cancer in Taiwan. There is still no available cure for this malignant disease. To address this issue, we applied the multimodality of molecular imaging to explore the efficacy of diagnostic and therapeutic nanoradiopharmaceuticals in an animal model of human colorectal adenocarcinoma [colorectal(More)
PURPOSE PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR) effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse(More)
PEGylated liposomes are important drug carriers for nanomedicine cancer therapy. PEGylated liposomes can encapsulate radio- and chemo-drugs and passively target tumor sites via enhanced permeability and retention effect. This study estimated the pharmacokinetics and dosimetry after administration of radio-chemotherapeutics ((111)In-labeled vinorelbine(More)
A copolymer of poly(ethylene glycol)-b-poly(caprolactone) (PEG-PCL) was modified with a benzyl moiety and labeled with I-131. A micelle system, (131)I-benzyl-micelles, formed from (131)I-benzyl-PEG-PCL and PEG-PCL-PC, was created and used for in vitro characterization and in vivo evaluation. Administration of (131)I-benzyl-micelles to a colon(More)
Owing to cultural and time zone differences, international students studying far away from their homes struggle to re-create home-like experiences. Living in a shared accommodation with new people further adds to this struggle, since common spaces become non-conducive to home-like activities. We study kitchen space in this context, and offer a solution(More)