Learn More
How simple neuronal circuits control behavior is not well understood at the molecular or genetic level. In Caenorhabditis elegans, foraging behavior consists of long, forward movements interrupted by brief reversals. To determine how this pattern is generated and regulated, we have developed novel perturbation techniques that allow us to depolarize selected(More)
The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and(More)
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) are a major subtype of ionotropic glutamate receptors (iGluRs) that mediate rapid excitatory synaptic transmission in the vertebrate brain. Putative AMPARs are also expressed in the nervous system of invertebrates. In Caenorhabditis elegans, the GLR-1 receptor subunit is(More)
BACKGROUND Cucumber, Cucumis sativus L., is an economically and nutritionally important crop of the Cucurbitaceae family and has long served as a primary model system for sex determination studies. Recently, the sequencing of its whole genome has been completed. However, transcriptome information of this species is still scarce, with a total of around 8,000(More)
The neurotransmitter glutamate mediates excitatory synaptic transmission by activating ionotropic glutamate receptors (iGluRs). In Caenorhabditis elegans, the GLR-1 receptor subunit is required for glutamate-gated current in a subset of interneurons that control avoidance behaviors. Current mediated by GLR-1-containing iGluRs depends on SOL-1, a(More)
Ionotropic glutamate receptors (iGluRs) mediate most excitatory synaptic signalling between neurons. Binding of the neurotransmitter glutamate causes a conformational change in these receptors that gates open a transmembrane pore through which ions can pass. The gating of iGluRs is crucially dependent on a conserved amino acid that was first identified in(More)
Previous studies using dominant-mutant constructs have implicated Rac1 GTPase in neuritogenesis and neuronal migration. However, overexpression of dominant mutants generally blocks Rho-GTPase activity; thus, it may not reveal the specific or physiological functions of Rac1. To address this issue, we have applied a conditional gene-targeting strategy, using(More)
Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In(More)
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila(More)
Auditory neurons are selective for temporal sound information that is important for rhythm, pitch, and timbre perception. Traditional models assume that periodicity information is represented either by the discharge rate of tuned modulation filters or synchrony in the discharge pattern. Compelling evidence for an invariant rate or synchrony code, however,(More)