Learn More
Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain imaging and other biomarkers to classify 737 Alzheimer's disease Neuroimaging initiative(More)
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation(More)
We examined 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we mapped volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each(More)
Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates(More)
Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in(More)
Numerous studies in animals and humans have shown that the hippocampus (HP) is involved in spatial navigation and memory. Blind subjects, in particular, must memorize extensive information to compensate for their lack of immediate updating of spatial information. Increased demands on spatial cognition and memory may be associated with functional and(More)
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based(More)
Children with autism spectrum disorder (ASD) exhibit characteristic cognitive and behavioral differences, but no systematic pattern of neuroanatomical differences has been consistently found. Recent neurodevelopmental models posit an abnormal early surge in subcortical white matter growth in at least some autistic children, perhaps normalizing by adulthood,(More)
Parkinson's disease (PD) has been associated with mild cognitive impairment (PDMCI) and with dementia (PDD). Using radial distance mapping, we studied the 3D structural and volumetric differences between the hippocampi, caudates, and lateral ventricles in 20 cognitively normal elderly (NC), 12 cognitively normal PD (PDND), 8 PDMCI, and 15 PDD subjects and(More)
Alzheimer disease (AD) is the most common type of dementia worldwide. Hippocampal atrophy and ventricular enlargement have been associated with AD but also with normal aging. We analyzed 1.5-T brain magnetic resonance imaging data from 46 cognitively normal elderly individuals (NC), 33 mild cognitive impairment and 43 AD patients. Hippocampal and(More)