Learn More
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation(More)
Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates(More)
We examined 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we mapped volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each(More)
Numerous studies in animals and humans have shown that the hippocampus (HP) is involved in spatial navigation and memory. Blind subjects, in particular, must memorize extensive information to compensate for their lack of immediate updating of spatial information. Increased demands on spatial cognition and memory may be associated with functional and(More)
Ideal biomarkers of Alzheimer's disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we explored the utility of automated 3D maps of the lateral ventricles as a(More)
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template(More)
Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in(More)
The link between brain structure and intelligence is a well-investigated topic, but existing analyses have mainly focused on adult samples. Studies in healthy children and adolescents are rare, and normative data specifically addressing the association between corpus callosum morphology and intellectual abilities are quite limited. To advance this field of(More)
In the prelingual and congenital deaf, functional reorganization is known to occur throughout brain regions normally associated with hearing. However, the anatomical correlates of these changes are not yet well understood. Here, we perform the first tensor-based morphometric analysis of voxel-wise volumetric differences in native signing prelingual and(More)
In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been(More)