Yi-Bing Cheng

Learn More
Thin-film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two-step sequential deposition process. We report that flat, uniform(More)
OBJECTIVE To evaluate the adrenocortical function in children with severe and critical enterovirus 71 infection by using a high-dose (250 µg) adrenocorticotropic hormone (ACTH) stimulation test. And to at provide experimental basis for glucocorticoid in the treatment of hand-foot-and-mouth disease (HFMD). METHOD This was a prospective multi-center study(More)
Dye-sensitized solar cells employing mesoporous TiO(2) beads have demonstrated longer electron diffusion lengths and extended electron lifetimes over Degussa P25 titania electrodes due to the well interconnected, densely packed nanocrystalline TiO(2) particles inside the beads. Careful selection of the dye to match the dye photon absorption characteristics(More)
To date, nickel(II) oxide (NiO) is one of the few p-type semiconductors that has successfully been used for the construction of dye-sensitized photocathodes as well as tandem dye-sensitized solar cells. In this study we present a novel fabrication method for the preparation of mesoporous NiO films based on preformed NiO nanopowders. Critical properties such(More)
In this work, the use of a high bandgap perovskite solar cell in a spectrum splitting system is demonstrated. A remarkable energy conversion efficiency of 23.4% is achieved when a CH3NH3PbBr3 solar cell is coupled with a 22.7% efficient silicon passivated emitter rear locally diffused solar cell. Relative enhancements of >10% are demonstrated by(More)
Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring(More)
Monodisperse mesoporous anatase titania beads with high surface areas and tunable pore size and grain diameter have been prepared through a combined sol-gel and solvothermal process in the presence of hexadecylamine (HDA) as a structure-directing agent. The monodispersity of the resultant titania beads, along with the spherical shape, can be controlled by(More)
Wireless sensor nodes are a versatile, general-purpose technology capable of measuring, monitoring and controlling their environment. Even though sensor nodes are becoming ever smaller and more power efficient, there is one area that is not yet fully addressed; power supply units (PSUs). Standard solutions that are efficient enough for electronic devices(More)
Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si(More)
The past 2 years have seen the uniquely rapid emergence of a new class of solar cell based on mixed organic-inorganic halide perovskite. Grain boundaries are present in polycrystalline thin film solar cell, and they play an important role that could be benign or detrimental to solar-cell performance. Here we present efficient charge separation and(More)