Yeyejide A Adeleye

Learn More
Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key(More)
BACKGROUND A myriad of new chemicals has been introduced into our environment and exposure to these agents can damage cells and induce cytotoxicity through different mechanisms, including damaging DNA directly. Analysis of global transcriptional and phenotypic responses in the yeast S. cerevisiae provides means to identify pathways of damage recovery upon(More)
Dopamine acts as neurotransmitter in the central and peripheral sympathetic nervous system. Determination of dopamine (DO) was performed by spectrophotometric analysis depending on the formation of new colored compound. The proposed procedure was efficient in quantitative determination of DO as pure material in pharmaceutical preparations and in urine(More)
As part of a larger effort to provide proof-of-concept in vitro-only risk assessments, we have developed a suite of high-throughput assays for key readouts in the p53 DNA damage response toxicity pathway: double-strand break DNA damage (p-H2AX), permanent chromosomal damage (micronuclei), p53 activation, p53 transcriptional activity, and cell fate (cell(More)
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl(More)
  • 1