Learn More
We hypothesize that one mechanism of the anti-epileptic effect of the ketogenic diet is to alter brain handling of glutamate. According to this formulation, in ketotic brain astrocyte metabolism is more active, resulting in enhanced conversion of glutamate to glutamine. This allows for: (a) more efficient removal of glutamate, the most important excitatory(More)
Glutamic acid is an important excitatory neurotransmitter of the brain. Two key goals of brain amino acid handling are to maintain a very low intrasynaptic concentration of glutamic acid and also to provide the system with precursors from which to synthesize glutamate. The intrasynaptic glutamate level must be kept low to maximize the signal-to-noise ratio(More)
The aim was to study the extent to which leucine furnishes alpha-NH2 groups for glutamate synthesis via branched-chain amino acid aminotransferase. The transfer of N from leucine to glutamate was determined by incubating astrocytes in a medium containing [15N]leucine and 15 unlabeled amino acids; isotopic abundance was measured with gas chromatography-mass(More)
In many epileptic patients, anticonvulsant drugs either fail adequately to control seizures or they cause serious side effects. An important adjunct to pharmacologic therapy is the ketogenic diet, which often improves seizure control, even in patients who respond poorly to medications. The mechanisms that explain the therapeutic effect are incompletely(More)
The metabolism of branched-chain amino acids (BCAAs) was studied in cortical synaptosomes. With [15N]leucine (1 mM) as precursor, the cumulative appearance of 15N in [15N]glutamate and [15N]aspartate was 0.2 nmol/min/mg of protein without supplemental alpha-ketoglutarate and 0.3 nmol/min/mg of protein in the presence of alpha-ketoglutarate (0.5 mM). The(More)
Children with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We(More)
Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of beta-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose(More)
The concentration of glutamate in the brain extracellular fluid must be kept low (approximately 3 microM) in order to maximize the signal-to-noise ratio upon the release of glutamate from neurons. In addition, the nerve endings require a supply of glutamate precursors that will not cause depolarization. The major precursor to neuronal glutamate is(More)
An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system(More)
Alanine transport and the role of alanine amino-transferase in the synthesis and consumption of glutamate were investigated in the preparation of rat brain synaptosomes. Alanine was accumulated rapidly via both the high- and low-affinity uptake systems. The high-affinity transport was dependent on the sodium concentration gradient and membrane electrical(More)