Yen Chi Lun

Learn More
Let x n , k ( α , β ) $x_{n,k}^{(\alpha ,\beta )}$ , k = 1 , … , n $k=1,\ldots ,n$ , be the zeros of Jacobi polynomials P n ( α , β ) ( x ) $P_{n}^{(\alpha ,\beta )}(x)$ arranged in decreasing order on ( − 1 , 1 ) $(-1,1)$ , where α , β > − 1 $\alpha ,\beta >-1$ , and θ n , k ( α , β ) = arccos x n , k ( α , β ) $\theta _{n,k}^{(\alpha ,\beta )}=\arccos(More)
  • 1