Yejun Wei

Learn More
Abstmct-This paper presents an extension of the au-thors' previous stratified motion planning results to the case where the base manifold upon which the motion planning occurs is not smooth. Robotic applications of this work includes motion planning for legged robots over non-smooth (but known) terrain and manipulation of non-smooth objects with multiple(More)
This paper presents the application of stratified motion planning to the robotic manipulation problem. Although the manipulation problem is a subclass of applications for stratified motion planning, the method present is general in that it is formulation in a manner independent of the object surface geometry or the kine-matics of the " fingers " of the(More)
– We have found, through a series of recent experiments, encouraging evidence that the neuro-motor system is motivated to change motor patterns when exposed to visuo-motor tasks. We have also shown that the learning of these tasks can be heightened with forces and/or visual distortions that appropriately manipulate the error. This process does not require(More)
Previous studies on reaching movements have shown that people can adapt to distortions that are either visuomotor (e.g., prism glasses) or mechanical (e.g., force fields) through repetitive training. Other work has shown that these two types of adaptation may share similar neural resources. One effective test of this sharing hypothesis would be to show that(More)
  • 1