Learn More
MOTIVATION Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S(More)
MOTIVATION Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid(More)
BACKGROUND Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. (More)
Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors. Therefore, an effective(More)
BACKGROUND Short interfering RNAs have allowed the development of clean and easily regulated methods for disruption of gene expression. However, while these methods continue to grow in popularity, designing effective siRNA experiments can be challenging. The various existing siRNA design guidelines suffer from two problems: they differ considerably from(More)
UNLABELLED Short interfering RNAs (siRNAs) have been gaining popularity as the gene knock-down tool of choice by many researchers because of the clean nature of their workings as well as the technical simplicity and cost efficiency in their applications. We have constructed siRecords, a database of siRNAs experimentally tested by researchers with consistent(More)
Type III Secretion System (T3SS), which plays important roles in pathogenesis or symbiosis, is widely expressed in a variety of gram negative bacteria. However, lack of unique nomenclature for T3SS genes has hindered T3SS related research. It is necessary to set up a knowledgebase integrating T3SS-related research data to facilitate the communication(More)
Small interfering RNAs (siRNAs) have become an indispensable tool for the investigation of gene functions. Most existing siRNA design tools were trained on datasets assembled from confined origins, incompatible with the diverse siRNA laboratory practice to which these tools will ultimately be applied. We have performed an updated analysis using the(More)
RNAi-based gene-silencing techniques offer a fast and cost-effective way of knocking down genes' functions in an easily regulated manner. Exciting progress has been made in recent years in the application of these techniques in basic biomedical research and therapeutic development. However, it remains a difficult task to design effective siRNA experiments(More)
Phosphoprotein-binding domains (PPBDs) mediate many important cellular and molecular processes. Ten PPBDs have been known to exist in the human proteome, namely, 14-3-3, BRCT, C2, FHA, MH2, PBD, PTB, SH2, WD-40 and WW. PepCyber:P approximately PEP is a newly constructed database specialized in documenting human PPBD-containing proteins and PPBD-mediated(More)