Learn More
Consumers increasingly rate, review and research products online (Jansen, 2010; Litvin et al., 2008). Consequently, websites containing consumer reviews are becoming targets of opinion spam. While recent work has focused primarily on manually identifiable instances of opinion spam, in this work we study deceptive opinion spam—fictitious opinions that have(More)
We posit that visually descriptive language offers computer vision researchers both information about the world, and information about how people describe the world. The potential benefit from this source is made more significant due to the enormous amount of language data easily available today. We present a system to automatically generate natural(More)
We present an approach for the joint extraction of entities and relations in the context of opinion recognition and analysis. We identify two types of opinion-related entities — expressions of opinions and sources of opinions — along with the linking relation that exists between them. Inspired by Roth and Yih (2004), we employ an integer linear programming(More)
Determining the polarity of a sentiment-bearing expression requires more than a simple bag-of-words approach. In particular, words or constituents within the expression can interact with each other to yield a particular overall polarity. In this paper, we view such subsentential interactions in light of composi-tional semantics, and present a novel(More)
Studying natural language, and especially how people describe the world around them can help us better understand the visual world. In turn, it can also help us in the quest to generate natural language that describes this world in a human manner. We present a simple yet effective approach to automatically compose image descriptions given computer vision(More)
Recent systems have been developed for sentiment classification, opinion recognition , and opinion analysis (e.g., detecting polarity and strength). We pursue another aspect of opinion analysis: identifying the sources of opinions, emotions, and sentiments. We view this problem as an information extraction task and adopt a hybrid approach that combines(More)
We present a system to automatically generate natural language descriptions from images. This system consists of two parts. The first part, content planning, smooths the output of computer vision-based detection and recognition algorithms with statistics mined from large pools of visually descriptive text to determine the best content words to use to(More)
Most previous studies in computerized deception detection have relied only on shallow lexico-syntactic patterns. This paper investigates syntactic stylometry for deception detection, adding a somewhat unconventional angle to prior literature. Over four different datasets spanning from the product review to the essay domain, we demonstrate that features(More)