Learn More
In spite of millions of years of evolutionary divergence, the conservation of gene function is common across distant lineages. As such, genes that are known to influence behaviour in one organism are likely to influence similar behaviours in other organisms. Recent studies of the evolution of behaviour and morphological adaptation support this notion. Thus,(More)
Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste(More)
Although many animal species sense gravity for spatial orientation, the molecular bases remain uncertain. Therefore, we studied Drosophila melanogaster, which possess an inherent upward movement against gravity-negative geotaxis. Negative geotaxis requires Johnston's organ, a mechanosensory structure located in the antenna that also detects near-field(More)
Honey bees undergo an age-related, socially regulated transition from working in the hive to foraging that has been previously associated with changes in the expression of thousands of genes in the brain. To understand the meaning of these changes, we conducted microarray analyses to examine the following: (i) the ontogeny of gene expression preceding the(More)
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I(More)
Degenerin/epithelial sodium channels (DEG/ENaC) represent a large family of animal-specific membrane proteins. Although the physiological functions of most family members are not known, some have been shown to act as nonvoltage gated, amiloride-sensitive sodium channels. The DEG/ENaC family is exceptionally large in genomes of Drosophila species relative to(More)
Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We(More)
Degenerin/epithelial Na(+) channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na(+) transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC(More)
Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates(More)
The response of individual animals to mating signals depends on the sexual identity of the individual and the genetics of the mating targets, which represent the mating social context (social environment). However, how social signals are sensed and integrated during mating decisions remains a mystery. One of the models for understanding mating behaviors in(More)