Learn More
Genes can affect natural behavioral variation in different ways. Allelic variation causes alternative behavioral phenotypes, whereas changes in gene expression can influence the initiation of behavior at different ages. We show that the age-related transition by honey bees from hive work to foraging is associated with an increase in the expression of the(More)
Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste(More)
In spite of millions of years of evolutionary divergence, the conservation of gene function is common across distant lineages. As such, genes that are known to influence behaviour in one organism are likely to influence similar behaviours in other organisms. Recent studies of the evolution of behaviour and morphological adaptation support this notion. Thus,(More)
This study links natural variation in a Drosophila melanogaster overwintering strategy, diapause, to the insulin-regulated phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110. Variation in diapause, a reproductive arrest, was associated with Dp110 by using Dp110 deletions and genomic rescue fragments in transgenic flies. Deletions of Dp110 increased the(More)
Complex biological processes require coordinated function of many genes. One evolutionary solution to the problem of coordinately expressing functionally related genes in bacteria and nematodes is organization of genes in operons. Surprisingly, eukaryotic operons are considered rare outside the nematode lineage. In Drosophila melanogaster, we found lounge(More)
Division of labor in honey bee colonies is influenced by the foraging gene (Amfor), which encodes a cGMP-dependent protein kinase (PKG). Amfor upregulation in the bee brain is associated with the age-related transition from working in the hive to foraging for food outside, and cGMP treatment (which increases PKG activity) causes precocious foraging. We(More)
Honey bees undergo an age-related, socially regulated transition from working in the hive to foraging that has been previously associated with changes in the expression of thousands of genes in the brain. To understand the meaning of these changes, we conducted microarray analyses to examine the following: (i) the ontogeny of gene expression preceding the(More)
Although many animal species sense gravity for spatial orientation, the molecular bases remain uncertain. Therefore, we studied Drosophila melanogaster, which possess an inherent upward movement against gravity-negative geotaxis. Negative geotaxis requires Johnston's organ, a mechanosensory structure located in the antenna that also detects near-field(More)
The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary(More)
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I(More)