Learn More
BACKGROUND Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to(More)
C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1,(More)
Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a(More)
Tea (Camellia sinensis (L.) O. Kuntze) hyper-accumulates fluoride (F), mainly in the leaves. To understand how tea copes with the stress caused by F, we tracked photosynthesis, antioxidant defense, and cell ultrastructure under different F concentrations (0–50 mg L−1). High F (≥5 mg L−1) caused decreases in photosynthetic and chlorophyll fluorescence(More)
  • 1