Learn More
Our goal is to enhance the ability to differentiate normal lung from subtle pathologies via multidetector row CT (MDCT) by extending a two-dimensional (2-D) texturebased tissue classification [adaptive multiple feature method (AMFM)] to use three-dimensional (3-D) texture features. We performed MDCT on 34 humans and classified volumes of interest (VOIs) in(More)
The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions(More)
Sensor-enabled smartphones are opening a new frontier in the development of mobile sensing applications. The recognition of human activities and context from sensor-data using classification models underpins these emerging applications. However, conventional approaches to training classifiers struggle to cope with the diverse user populations routinely(More)
Chromatin remodeling during DNA double-strand break (DSB) repair is required to facilitate access to and repair of DSBs. This remodeling requires increased acetylation of histones and a shift in nucleosome organization to create open, relaxed chromatin domains. However, the underlying mechanism driving changes in nucleosome structure at DSBs is poorly(More)
Colorectal carcinogenesis involves the overexpression of many immediate-early response genes associated with growth and inflammation, which significantly alters downstream protein synthesis and small-molecule metabolite production. We have performed a serum metabolic analysis to test the hypothesis that the distinct metabolite profiles of malignant tumors(More)
The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at(More)
DNA double-strand break (DSB) repair involves complex interactions between chromatin and repair proteins, including Tip60, a tumour suppressor. Tip60 is an acetyltransferase that acetylates both histones and ATM (ataxia telangiectasia mutated) kinase. Inactivation of Tip60 leads to defective DNA repair and increased cancer risk. However, how DNA damage(More)
Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing(More)
After our serum metabonomic study of colorectal cancer (CRC) patients recently published in J. Proteome Res., we profiled urine metabolites from the same group of CRC patients (before and after surgical operation) and 63 age-matched healthy volunteers using gas chromatography-mass spectrometry (GC-MS) in conjunction with a multivariate statistics technique.(More)