Ye-Hong Chen

Learn More
In this paper, we study a cell-based row-structure layout decomposition problem for triple patterning lithography (TPL) which asks to minimize a weighted sum of coloring conflicts and stitches. We show how to extend a prior graph-based approach to solve the problem optimally under certain assumptions. Furthermore, several methods to substantially reduce the(More)
In this paper, we study row-based detailed placement refinement for triple patterning lithography (TPL), which asks to find a refined detailed placement solution as well as a valid TPL layout decomposition under the objective of minimizing the number of stitches and the half-perimeter wirelength. Our problem does not have precoloring solutions of cells as(More)
Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic(More)
Motivated by "transitionless quantum driving", we construct shortcuts to adiabatic passage in a three-atom system to create a singlet state with the help of quantum zeno dynamics and non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the results reveal that the scheme is fast and robust against(More)
We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The(More)
In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust(More)