Ye-Hong Chen

  • Citations Per Year
Learn More
Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic(More)
In this paper, we study a cell-based row-structure layout decomposition problem for triple patterning lithography (TPL) which asks to minimize a weighted sum of coloring conflicts and stitches. We show how to extend a prior graph-based approach to solve the problem optimally under certain assumptions. Furthermore, several methods to substantially reduce the(More)
In this paper, we study row-based detailed placement refinement for triple patterning lithography (TPL), which asks to find a refined detailed placement solution as well as a valid TPL layout decomposition under the objective of minimizing the number of stitches and the half-perimeter wirelength. Our problem does not have precoloring solutions of cells as(More)
Motivated by "transitionless quantum driving", we construct shortcuts to adiabatic passage in a three-atom system to create a singlet state with the help of quantum zeno dynamics and non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the results reveal that the scheme is fast and robust against(More)
In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the center of the setups. With the multiple Schrödinger(More)
In this paper, we propose an efficient scheme to generate three-atom W states in spatially separated cavities connected by optical fibers. In the scheme, we combine the “transitionless quantum driving” with “quantum Zeno dynamics” to construct a shortcut to fast generate W states. Comparing with the traditional adiabatic passage, the significant advantage(More)
We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The(More)