Learn More
In this paper, we propose a new PDE-based methodology for deformable surfaces that is capable of automatically evolving its shape to capture the geometric boundary of the data and simultaneously discover its underlying topological structure. Our model can handle multiple types of data (such as volumetric data, 3D point clouds and 2D image data), using a(More)
We propose a semi-automatic thalamus and thalamus nuclei segmentation algorithm from Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) based on the mean-shift algorithm. Comparing with existing thalamus segmentation algorithms which are mainly based on K-means algorithm, our mean-shift based algorithm is more flexible and adaptive. It does not assume a(More)
SUMMARY A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this paper, we apply advanced computational techniques to extract 3D models of the corpus callosum (CC) and subsequently analyze local shape variations in a homogeneous group of autistic(More)
Brain volume calculations are crucial in modern medical research, especially in the study of neurodevelopmental disorders. In this paper, we present an algorithm for calculating two classifications of brain volume, total brain volume (TBV) and intracranial volume (ICV). Our algorithm takes MRI data as input, performs several preprocessing and intermediate(More)
Autism is a severe developmental disorder whose neurological basis is largely unknown. The aim of this study was to identify the shape differences of the corpus callosum between patients with autism and control subjects. Anatomical landmarks were collected from midsagittal magnetic resonance images of 25 patients and 18 controls. Euclidean distance matrix(More)
In this paper, we propose a new shape-modeling paradigm based on the concept of Lagrangian surface flow. Given an input polyg-onal model, the user interactively defines a distance field around regions of interest; the locally or globally affected regions will then automatically deform according to the user-defined distance field. During the deformation(More)
In this paper, we develop a novel subdivision-based model—Intelligent Balloon—which is capable of recovering arbitrary, complicated shape geometry as well as its unknown topology simultaneously. Our Intelligent Balloon is a parameterized subdivision surface whose geometry and its deformable behaviors are governed by the principle of energy(More)
BACKGROUND The brain develops in concert and in coordination with the developing facial tissues, with each influencing the development of the other and sharing genetic signaling pathways. Autism spectrum disorders (ASDs) result from alterations in the embryological brain, suggesting that the development of the faces of children with ASD may result in subtle(More)
ZHENG, Traditional Chinese Medicine syndrome, is an integral and essential part of Traditional Chinese Medicine theory. It defines the theoretical abstraction of the symptom profiles of individual patients and thus, used as a guideline in disease classification in Chinese medicine. For example, patients suffering from gastritis may be classified as Cold or(More)
This paper presents a surface reconstruction algorithm that can recover correct shape geometry as well as its unknown topology from both volumetric images and unorganized point clouds. The algorithm starts from a simple seed model (of genus zero) that can be arbitrarily initiated within any datasets. The deformable behavior of the model is governed by a(More)