Yazan M Al-Hasan

Learn More
Changes in neural activity caused by exposure to drugs may trigger homeostatic mechanisms that attempt to restore normal neural excitability. In Drosophila, a single sedation with the anesthetic benzyl alcohol changes the expression of the slo K(+) channel gene and induces rapid drug tolerance. We demonstrate linkage between these two phenomena by using a(More)
BACKGROUND A prevailing hypothesis is that the set of genes that underlie the endophenotypes of alcoholism overlap with those responsible for the addicted state. Functional ethanol tolerance, an endophenotype of alcoholism, is defined as a reduced response to ethanol caused by prior ethanol exposure. The neuronal origins of functional rapid tolerance are(More)
Physical dependence on alcohol and anesthetics stems from neuroadaptive changes that act to counter the effects of sedation in the brain. In Drosophila, exposure to either alcohol or solvent anesthetics have been shown to induce changes in expression of the BK-type Ca(2+)-activated K(+) channel gene slo. An increase in slo expression produces an adaptive(More)
The hypnotic effects of anesthetics are caused by their interactions with neuronal components vital for proper signaling. An understanding of the adaptive mechanisms that lead to the development of anesthetic tolerance can offer insight into the regulation of neuroexcitability and plasticity that alter behavioral output. Here we use genetic and(More)
  • 1