Yawen Tian

Learn More
The mechanisms underlying the disruption of glutamate-glutamine cycle (Glu-Gln cycle) in manganism are still unknown. To approach the concrete mechanisms, the rats were i.p. injected with different doses of MnCl(2) (0, 8, 40, and 200 micromol/kg), and the levels of Mn, Glu, and Gln, the morphological and ultrastructural changes, activities of(More)
Manganese (Mn) is an essential trace element for humans. However, manganism would be caused by excessive Mn. The mechanisms underlying excitotoxicity induced by manganism are poorly understood. As it is known to us, glutamate (Glu) is the most prevalent excitatory neurotransmitter. To determine the possible role of dysfunction of Glu transportation and(More)
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively.(More)
  • 1