Yasuyuki Saito

Learn More
The melanin-concentrating hormone (MCH) system is thought to be an important regulator of food intake. Recently the orphan G protein-coupled receptor SLC-1 was identified as the MCH receptor (MCHR). Preliminary analyses of MCHR mRNA distribution have supported a role for the MCH system in nutritional homeostasis. We report here a complete anatomical(More)
Orphan G-protein-coupled receptors (GPCRs) are cloned proteins with structural characteristics common to the GPCRs but that bind unidentified ligands. Orphan GPCRs have been used as targets to identify novel transmitter molecules. Here we describe the isolation from brain extracts and the characterization of the natural ligand of a particular orphan GPCR(More)
Urotensin II (UII) is a peptide known to be a potent vasoconstrictor. The urotensin II receptor (UII-R) is expressed not only in peripheral tissues but also in the brain of rodents. As a basis for studies of UII central nervous system actions, UII-R localization in the rat brain was analyzed by in situ hybridization and by in situ binding. UII-R mRNA was(More)
SHP-2 is a cytoplasmic protein tyrosine phosphatase (PTP) that contains two Src homology 2 (SH2) domains. Although PTPs are generally considered to be negative regulators on the basis of their ability to oppose the effects of protein tyrosine kinases, SHP-2 is unusual in that it promotes the activation of the Ras-MAPK signaling pathway by receptors for(More)
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which(More)
The "orphan" G-protein-coupled receptors (GPCRs) are cloned GPCRs that bind unknown ligands. Since 1995, nineteen orphan GPCRs have been used as targets to identify and isolate their natural ligands via the application of the "orphan receptor strategy". These ligands are peptides, lipids or biogenic amines, and act as transmitter molecules. One(More)
The life span of intestinal epithelial cells (IECs) is short (3-5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of(More)
The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11c(high)(More)