Yasuyuki Kawashima

  • Citations Per Year
Learn More
We performed x-ray crystallographic analyses of the 6-aminohexanoate cyclic dimer (Acd) hydrolase (NylA) from Arthrobacter sp., an enzyme responsible for the degradation of the nylon-6 industry byproduct. The fold adopted by the 472-amino acid polypeptide generated a compact mixed alpha/beta fold, typically found in the amidase signature superfamily; this(More)
Alkalophilic, nylon oligomer-degrading strains, Agromyces sp. and Kocuria sp., were isolated from the wastewater of a nylon-6 factory and from activated sludge from a sewage disposal plant. The 6-aminohexanoate oligomer hydrolases (NylC) from the alkalophilic strains had 95.8 to 98.6% similarity to the enzyme in neutrophilic Arthrobacter sp. but had(More)
A carboxylesterase with a beta-lactamase fold from Arthrobacter possesses a low level of hydrolytic activity (0.023 mumol.min(-1).mg(-1)) when acting on a 6-aminohexanoate linear dimer byproduct of the nylon-6 industry (Ald). G181D/H266N/D370Y triple mutations in the parental esterase increased the Ald-hydrolytic activity 160-fold. Kinetic studies showed(More)
Promiscuous 6-aminohexanoate-linear dimer (Ald)-hydrolytic activity originally obtained in a carboxylesterase with a beta-lactamase fold was enhanced about 80-fold by directed evolution using error-prone PCR and DNA shuffling. Kinetic studies of the mutant enzyme (Hyb-S4M94) demonstrated that the enzyme had acquired an increased affinity (K(m) = 15 mM) and(More)
UNLABELLED The enzyme 6-aminohexanoate-dimer hydrolase catalyzes amide synthesis. The yield of this reverse reaction in 90% t-butyl alcohol was found to vary drastically when enzyme mutants with substitutions of several amino acids located at the entrance of the catalytic cleft were used. Movement of the loop region and the flip-flop of Tyr170 generate a(More)
  • 1