Yasutaka Ohta

Learn More
The Ras-related small GTPase RalA is involved in controlling actin cytoskeletal remodelling and vesicle transport in mammalian cells. We identified the mammalian homologue of Sec5, a subunit of the exocyst complex determining yeast cell polarity, as a specific binding partner for GTP-ligated RalA. Inhibition of RalA binding to Sec5 prevents filopod(More)
The serine/threonine kinase p21-activated kinase 1 (Pak1) controls the actin cytoskeletal and ruffle formation through mechanisms that are independent of GTPase activity. Here we identify filamin FLNa as a Pak1-interacting protein through a yeast two-hybrid screen using the amino terminus of Pak1 as a bait. FLNa is stimulated by physiological signalling(More)
FilGAP is a newly recognized filamin A (FLNa)-binding RhoGTPase-activating protein. The GTPase-activating protein (GAP) activity of FilGAP is specific for Rac and FLNa binding targets FilGAP to sites of membrane protrusion, where it antagonizes Rac in vivo. Dominant-negative FilGAP constructs lacking GAP activity or knockdown of endogenous FilGAP by small(More)
The Ras-mitogen-activated protein (Ras-MAP) kinase pathway regulates various cellular processes, including gene expression, cell proliferation, and survival. Ribosomal S6 kinase (RSK), a key player in this pathway, modulates the activities of several cytoplasmic and nuclear proteins via phosphorylation. Here we report the characterization of the(More)
The receptor tyrosine kinase Ror2 plays important roles in developmental morphogenesis. It has recently been shown that Ror2 mediates Wnt5a-induced noncanonical Wnt signaling by activating the Wnt-JNK pathway and inhibiting the beta-catenin-TCF pathway. However, the function of Ror2 in noncanonical Wnt signaling leading to cell migration is largely unknown.(More)
Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with(More)
Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are(More)
The heterodimeric transcription factor PEBP2/CBF is composed of a DNA-binding subunit, called Runx1, and a non-DNA-binding subunit, called PEBP2beta/CBFbeta. The Runx1 protein is detected exclusively in the nuclei of most cells and tissues, whereas PEBP2beta is located in the cytoplasm. We addressed the mechanism by which PEBP2beta localizes to the(More)
SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) belongs to the MAPK (mitogen-activated protein kinase) family and is important in many biological contexts. JNK activation is regulated by phosphorylation of specific tyrosine and threonine residues sequentially catalysed by MKK4 and MKK7, which are both dual-specificity MAPKKs (MAPK(More)
  • 1