Learn More
BACKGROUND Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale,(More)
Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides(More)
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream(More)
The transmembrane protein ADAM22 is expressed at high levels in the brain. From its molecular structure, ADAM22 is thought to be an adhesion molecule or a receptor because it has functional disintegrin-like and cysteine-rich sequences in its ectodomain. The phenotypic analysis of ADAM22-deficient mice has indicated the important roles played by ADAM22 in(More)
Pol II(G) is a distinct form of RNA polymerase II that contains the tightly associated Gdown1 polypeptide (encoded by POLR2M). Unlike Pol II, Pol II(G) is highly dependent upon Mediator for robust activator-dependent transcription in a biochemically defined in vitro system. Here, in vitro studies show that Gdown1 competes with TFIIF for binding to the RPB1(More)
Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and(More)
BACKGROUND Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. RESULTS We analyzed time-course phosphoproteome data obtained previously by liquid(More)
Our recently developed rice proteogenomics database (OryzaPG-DB) is the first sustainable resource for rice shotgun-based proteogenomics, providing information on peptides identified in rice protein digested peptides measured by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mapping of the peptides to their genomic origins and the(More)
The annotated genomes of organisms define a 'blueprint' of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da)(More)
Parkinson's disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism - an initial step(More)