Yasuo Azuma

  • Citations Per Year
Learn More
Graphene nanoribbons (GNR) are one of the most promising candidates for the fabrication of graphene-based nanoelectronic devices such as high mobility field effect transistors (FET). Here, we report a high-yield fabrication of a high quality another type of GNR analogue, fully flattened carbon nanotubes (flattened CNTs), using solution-phase extraction of(More)
Robust nanogap electrodes for nanodevices with a separation of 3.0 ± 1.7 nm were simultaneously mass-produced at a yield of 90% by a combination of electron beam lithography (EBL) and electroless gold plating (EGP). Nanogap electrodes demonstrated their robustness as they maintained their structure unchanged up to temperatures of 170 °C, during the(More)
Ideal discrete energy levels in synthesized Au nanoparticles (6.2 ± 0.8 nm) for a chemically assembled single-electron transistor (SET) are demonstrated at 300 mK. The spatial structure of the double-gate SET is determined by two gate and drain voltages dependence of the stability diagram, and electron transport to the Coulomb box of a single, nearby(More)
Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and(More)
To demonstrate that roll-to-roll (R2R) gravure printing is a suitable advanced manufacturing method for flexible thin film transistor (TFT)-based electronic circuits, three different nanomaterial-based inks (silver nanoparticles, BaTiO3 nanoparticles and single-walled carbon nanotubes (SWNTs)) were selected and optimized to enable the realization of fully(More)
Tribenzosubporphyrins are boron(III)-chelated triangular bowl-shaped ring-contracted porphyrins that possess a 14π-aromatic circuit. Their flat molecular shapes and discrete molecular orbital diagrams make them ideal for observation by scanning tunneling microscopy (STM). Expanding their applications toward single molecule-based devices requires a(More)
A single electron has been observed on a nanodot in a double-barrier tunneling structure by noncontact atomic-force microscopy at fixed separation. Frequency shift-voltage dependence of an Au-coated cantilever/vacuum/1-decanethiol protected Au nanodot/1-octanethiol self-assembled monolayer/Au substrate structure deviates from the theoretical parabolic(More)
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used(More)
The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a(More)