Yasunobu Seno

Learn More
The conformational change taking place in myoglobin concomitantly with the observed geometrical change at the heme-His(F8) linkage upon oxygenation is studied by normal mode analysis, which is based on the quadratic approximation of the conformational energy function. The heme-globin interaction energy increases for this change by 8.114 kcal/mol when both(More)
Dynamic properties of deoxymyoglobin are studied theoretically by the analysis of conformational fluctuations. Root-mean-square atomic fluctuations and distance fluctuations between different segments reveal the mechanical construction of the molecule. Eight alpha-helices behave as relatively rigid bodies and corner regions are more flexible, showing larger(More)
Pressure effect on the equilibrium conformation in sperm whale deoxymyoglobin and its volume fluctuation are studied by the normal mode analysis and strain tensor analysis. The pressure-induced deformation of interhelix regions are found to be remarkably more compressed than the other parts of the molecule. The intrahelix compressibility is shown to be(More)
Recently, a powerful parallel-vector processor became available for molecular science. A new FORTRUN program was coded to treat the whole hemoglobin molecule with twofold symmetry. Using the X-ray coordinates of deoxyhemoglobin and oxyhemoglobin, minimum energy conformations were obtained for both the T-state and the R-state on the two-state model of(More)
  • 1