Yasunobu Seno

Learn More
Dynamic properties of deoxymyoglobin are studied theoretically by the analysis of conformational fluctuations. Root-mean-square atomic fluctuations and distance fluctuations between different segments reveal the mechanical construction of the molecule. Eight alpha-helices behave as relatively rigid bodies and corner regions are more flexible, showing larger(More)
The conformational change taking place in myoglobin concomitantly with the observed geometrical change at the heme-His(F8) linkage upon oxygenation is studied by normal mode analysis, which is based on the quadratic approximation of the conformational energy function. The heme-globin interaction energy increases for this change by 8.114 kcal/mol when both(More)
Pressure effect on the equilibrium conformation in sperm whale deoxymyoglobin and its volume fluctuation are studied by the normal mode analysis and strain tensor analysis. The pressure-induced deformation of interhelix regions are found to be remarkably more compressed than the other parts of the molecule. The intrahelix compressibility is shown to be(More)
Recently, a powerful parallel-vector processor became available for molecular science. A new FORTRUN program was coded to treat the whole hemoglobin molecule with twofold symmetry. Using the X-ray coordinates of deoxyhemoglobin and oxyhemoglobin, minimum energy conformations were obtained for both the T-state and the R-state on the two-state model of(More)
  • 1