Learn More
Viral infections have been associated with the initiation and exacerbations often observed with autoimmune disease. Mechanisms by which viruses may play a role in the development of autoreactive immune responses include polyclonal activation of B and T cells, molecular mimicry, viral infection of immune cells, exposure of sequestered antigens, or altered(More)
Dendritic cells (DCs) play essential roles in both innate and adaptive immune responses. In addition, mutual regulation of the nervous system and immune system is well studied. One of neuropeptides, calcitonin gene-related peptide (CGRP), is a potent regulator in immune responses; in particular, it has anti-inflammatory effects in innate immunity. For(More)
This study evaluated effects of the inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), on the neuropathology and clinical disease produced by Theiler's murine encephalomyelitis virus (TMEV) DA strain infection. Treatment with AG was started on day 7, 14, 28 or 66 post-inoculation and continued for a minimum of 21 days. Inflammation,(More)
We constructed a Theiler's virus mutant designated DA3304, in which the amino acid at position 101 of VP1 was changed from a threonine to an alanine. Because of this single amino acid change, DA3304 could still produce a biphasic central nervous system disease similar to that produced by the wild-type DA virus. However, DA3304 was significantly attenuated(More)
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons(More)
Theiler's murine encephalomyelitis virus (TMEV) infection of mice can produce a biphasic disease of the central nervous system (CNS). Most susceptible strains of mice survive the acute infection and develop a chronic demyelinating disease. In this report, we analyzed the routes of spread of TMEV within the CNS of nude mice and target sites eventually(More)
Theiler's murine encephalomyelitis viruses, which are murine picornaviruses, can cause central nervous system inflammatory disease. To study the role of loop II in capsid protein VP1, two mutant viruses of strain DA in which DA loop II amino acids were replaced with strain GDVII amino acids were constructed. Infection of mice with the two mutant viruses led(More)
Theiler's murine encephalomyelitis virus (TMEV) belongs the family Picornaviridae. TMEV not only replicates in the gastrointestinal tract but also spreads to the central nervous system (CNS) either by a hematogenous or a neural pathway during natural infection. The DA strain of TMEV infects neurons during the acute phase, and glial cells and macrophages(More)
Stachybotrydial, a triprenyl phenol metabolite from a fungus, has a plasminogen modulator activity selective to Glu-plasminogen. Stachybotrydial enhanced fibrin binding and activation of Glu-plasminogen (2- to 4-fold enhancement at 60-120 microM) but not of Lys-plasminogen. Approximately 1.2-1.6 moles of [3H]stachybotrydial bound to Glu-plasminogen to exert(More)
Three thiopeptide metabolites that enhance fibrin binding of plasminogen were isolated from a culture of Streptomyces sp. R1401. A combination of spectroscopic analyses revealed that these compounds were identical with the antibiotic A10255B, E and G. These agents enhanced fibrin binding of plasminogen and plasminogen/urokinase-mediated fibirinolysis at(More)
  • 1