Yasuhisa Ohata

Learn More
Sclerostin, coded by SOST, is a secretory protein that is specifically expressed in osteocytes and suppresses osteogenesis by inhibiting WNT signaling. The regulatory mechanism underlying SOST expression remains unclear mainly due to the absence of an adequate human cell model. Thus, we herein attempted to establish a cell model of human dermal fibroblasts(More)
Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several(More)
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that(More)
Osteocytes express multiple genes involved in mineral metabolism including PHEX, FGF23, DMP1 and FAM20C. In Hyp mice, a murine model for X-linked hypophosphatemia (XLH), Phex deficiency results in the overproduction of FGF23 in osteocytes, which leads to hypophosphatemia and impaired vitamin D metabolism. In this study, to further clarify the abnormality in(More)
Fibroblast growth factor-23 (FGF23) is well established to play crucial roles in the regulation of phosphate homeostasis. X-linked hypophosphatemic rickets (XLH) is characterized by impaired mineralization and growth retardation associated with elevated circulating FGF23 levels. Administration of phosphate and calcitriol is effective in improving growth(More)
Fibroblast growth factor 23 (FGF23) plays a central role in phosphate (P) homeostasis. However, the precise mechanism of how FGF23 secretion is regulated remains to be elucidated. In the present study, we examined the effect of intravenous pamidronate administration on serum levels of FGF23. Thirteen patients with osteogenesis imperfecta were treated with(More)
Fibroblast growth factor 23 (FGF23) functions in an endocrine fashion and requires α-Klotho to exert its effects on the target organs. We have recently demonstrated that the human placenta also expresses α-Klotho, which led us to hypothesize that FGF23 may exert effects on the placenta. Immunohistochemical analysis demonstrated the expression of FGF(More)
CONTEXT Fetal serum levels of calcium and phosphate are higher than those in the maternal levels. Although α-Klotho is known to participate in calcium and phosphate metabolism in adults, its role in the perinatal period remains unknown. OBJECTIVE This study aimed to determine the baseline levels of soluble α-Klotho in fetuses and compare them with those(More)
Caffey disease, also known as infantile cortical hyperostosis, is a rare bone disease characterized by acute inflammation with swelling of soft tissues and hyperostosis of the outer cortical surface in early infancy. The common heterozygous mutation of the COL1A1 gene, p.Arg1014Cys, has been reported in patients with Caffey disease. However, its(More)
A 10-yr-old boy visited Minoh City Hospital complaining of gross hematuria. Laboratory investigations revealed hypercalcemia, hypophosphatemia, and elevated serum levels of parathyroid hormone. A stone was found in the right ureter with drip infusion pyelography. A parathyroid adenoma was successfully diagnosed with computed tomography, ultrasonography, and(More)