Learn More
The Schizosaccharomyces pombe Swi5 protein forms two distinct protein complexes, Swi5-Sfr1 and Swi5-Swi2, each of which plays an important role in the related but functionally distinct processes of homologous recombination and mating-type switching, respectively. The Swi5-Sfr1 mediator complex has been shown to associate with the two RecA-like recombinases,(More)
Nucleoprotein filaments made up of Rad51 or Dmc1 recombinases, the core structures of recombination, engage in ATP-dependent DNA-strand exchange. The ability of recombinases to form filaments is enhanced by recombination factors termed 'mediators'. Here, we show that the Schizosaccharomyces pombe Swi5-Sfr1 complex, a conserved eukaryotic protein complex, at(More)
trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)-mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several(More)
Rad51 forms a helical filament on single-stranded DNA and promotes strand exchange between two homologous DNA molecules during homologous recombination. The Swi5-Sfr1 complex interacts directly with Rad51 and stimulates strand exchange. Here we describe structural and functional aspects of the complex. Swi5 and the C-terminal core domain of Sfr1 form an(More)
Recombination is essential for the recovery of stalled/collapsed replication forks and therefore for the maintenance of genomic stability. The situation becomes critical when the replication fork collides with an unrepaired single-strand break and converts it into a one-ended double-strand break. We show in fission yeast that a unique broken replication(More)
To identify novel genes involved in DNA double-strand break (DSB) repair, we previously isolated Schizosaccharomyces pombe mutants which are hypersensitive to methyl methanesulfonate (MMS) and synthetic lethals with rad2. This study characterizes one of these mutants, rad60-1. The gene that complements the MMS sensitivity of this mutant was cloned and(More)
The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break(More)
Several accessory proteins referred to as mediators are required for the full activity of the Rad51 (Rhp51 in fission yeast) recombinase. In this study, we analyzed in vivo functions of the recently discovered Swi5/Sfr1 complex from fission yeast. In normally growing cells, the Swi5-GFP protein localizes to the nucleus, where it forms a diffuse nuclear(More)
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast(More)
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric(More)