Yasuhiko Nakanishi

Learn More
The relatively low invasiveness of electrocorticography (ECoG) has made it a promising candidate for the development of practical, high-performance neural prosthetics. Recent ECoG-based studies have shown success in decoding hand and finger movements and muscle activity in reaching and grasping tasks. However, decoding of force profiles is still lacking.(More)
Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG) has seen recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less(More)
Seeking to apply brain-machine interface technology in neuroprosthetics, a number of methods for predicting trajectory of the elbow and wrist have been proposed and have shown remarkable results. Recently, the prediction of hand trajectory and classification of hand gestures or grasping types have attracted considerable attention. However, trajectory(More)
Studies on brain-machine interface techniques have shown that electrocorticography (ECoG) is an effective modality for predicting limb trajectories and muscle activity in humans. Motor control studies have also identified distributions of "extrinsic-like" and "intrinsic-like" neurons in the premotor (PM) and primary motor (M1) cortices. Here, we(More)
Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG) has received much focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity(More)
  • 1