Yasuaki Mochizuki

Learn More
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied(More)
The genome of the basal choradate Ciona intestinalis contains a basic set of genes with less redundancy compared to the vertebrate genome. Extensive EST analyses, cDNA sequencing, and clustering yielded "Ciona intestinalis Gene Collection Release 1," which contains cDNA clones for 13,464 genes, covering nearly 85% of the Ciona mRNA species. This release is(More)
Members of the T-box family of transcription factors share an evolutionarily conserved DNA-binding domain and play significant roles in various processes of embryonic development. Vertebrate T-box genes are categorized into the following five major subfamilies (eight groups), depending on sequence similarities: Brachyury, Tbx1 (Tbx1/10, Tbx15/18/22, Tbx20),(More)
A set of 12,779 expressed sequence tags (ESTs), both the 5'-most and 3'-most ends, derived from Ciona intestinalis tadpole larvae was categorized into 3521 independent clusters, from which 1013 clusters corresponding to 9424 clones were randomly selected to analyze genetic information and gene expression profiles. When compared with sequences in databases,(More)
In the present study, we conducted an extensive analysis to identify novel genes with developmental function among Ciona intestinalis genes discovered by cDNA projects. Translation of a total of 200 genes expressed during embryogenesis was suppressed by using specific morpholino antisense oligonucleotides. Suppression of the translation of any of 40 genes(More)
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be(More)
  • 1