Yasmine Hamra-Amitay

Learn More
We investigated the anti-inflammatory effects of acetylcholinesterase inhibitors (AChEI) at the cellular and molecular levels. AChEI suppressed lymphocyte proliferation and pro-inflammatory cytokine production, as well as extracellular esterase activity. Anti-inflammatory activity was mediated by the alpha7 nicotinic acetylcholine receptor (neuronal); the(More)
Alternative splicing induces, under abnormal cholinergic neurotransmission, overproduction of the rare "readthrough" acetylcholinesterase variant AChE-R. We explored the pathophysiological relevance of this phenomenon in patients with myasthenia gravis (MG) and rats with experimental autoimmune MG (EAMG), neuromuscular junction diseases with depleted(More)
The cholinergic network affects various cellular functions including neurotransmission, and immune reactions. In Myasthenia Gravis (MG), diagnosis and symptomatic therapy are based on cholinergic modulation by acetylcholinesterase inhibitors (AChEI). In Alzheimer's disease (AD) a neurodegenerative disorder associated with inflammatory pathology, cholinergic(More)
The neuromuscular weakness associated with myasthenia gravis (MG) can be transiently relieved by pharmacological inhibitors of acetylcholinesterase (AChE). Here, we expand the anticholinesterase repertoire to include 2'-O-methyl-protected antisense oligonucleotides targeted to AChE mRNA (EN101). Using stimulated-single fiber electromyography, we show that(More)
  • 1