Yasmina Bestaoui

Learn More
— This paper presents missile guidance as a complex robotic problem: a hybrid non-linear system moving in a heterogeneous environment. The proposed solution to this problem combines a sampling-based path planner, Dubins' curves and a locally-optimal guidance law. This algorithm aims to find feasible trajectories that anticipate future flight conditions,(More)
—Dynamics of automated guided vehicles (AGVs) are described by a nonlinear nonholonomic model with two inputs: the rear axle torque and the steering angle torque. This model uses integrated longitudinal and lateral behavior. The first part of this paper is concerned with motion generation, taking into account kinodynamics and motor's constraints. Usual(More)
Minimum time point to point motion planning has been solved considering kinematical constraints on speed and acceleration [3]. These bounds are approximations and imply the full capability of the robot cannot be utilized. Efficiency can be increased by considering the characteristics of the robot dynamics. [l] has presented a trajectory generation based on(More)
The objective of this paper is to generate a desired flight path to be followed by an autonomous airship. The space is supposed without obstacles. As there is six degrees of freedom and only three inputs for the LSC airship in a low velocity flight, three equality constraints appear due to the under-actuation. When the roll φ and pitch θ angles as well as(More)