Learn More
Device-free passive indoor localization is playing a critical role in many applications such as elderly care, intrusion detection, smart home, etc. However, existing device-free localization systems either suffer from labor-intensive offline training or require dedicated special-purpose devices. To address the challenges, we present our system named(More)
Recent research has demonstrated the feasibility of detecting human respiration rate non-intrusively leveraging commodity WiFi devices. However, is it always possible to sense human respiration no matter where the subject stays and faces? What affects human respiration sensing and what's the theory behind? In this paper, we first introduce the Fresnel model(More)
Despite its importance, walking direction is still a key context lacking a cost-effective and continuous solution that people can access in indoor environments. Recently, device-free sensing has attracted great attention because these techniques do not require the user to carry any device and hence could enable many applications in smart homes and offices.(More)
Data quality and budget are two primary concerns in urban-scale mobile crowdsensing applications. In this paper, we leverage the spatial and temporal correlation among the data sensed in different sub-areas to significantly reduce the required number of sensing tasks allocated (corresponding to budget), yet ensuring the data quality. Specifically, we(More)
Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and(More)
This paper presents the design and implementation of RT-Fall, a real-time, contactless, low-cost yet accurate indoor fall detection system using the commodity WiFi devices. RT-Fall exploits the phase and amplitude of the fine-grained Channel State Information (CSI) accessible in commodity WiFi devices, and for the first time fulfills the goal of segmenting(More)
The opportunity to leverage crowd sourcing-based model to facilitate software requirements acquisition has been recognized to maximize the advantages of the diversity of talents and expertise available within the crowd. Identifying well-suited participants is a common issue in crowd sourcing system. Requirements acquisition tasks call for participants with(More)
For participatory sensing, task allocation is a crucial research problem that embodies a tradeoff between sensing quality and cost. An organizer usually publishes and manages multiple tasks utilizing one shared budget. Allocating multiple tasks to participants, with the objective of maximizing the overall data quality under the shared budget constraint, is(More)