Yasemin Altun

Learn More
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal(More)
Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs such as multiple dependent output variables and structured output spaces. We(More)
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems. 1 Problem Statement In reinforcement learning, we have an agent which is in a state s and draws(More)
This paper presents a novel approach to broad-coverage word sense disambiguation and information extraction. The task consists of annotating text with the tagset defined by the 41 Wordnet supersense classes for nouns and verbs. Since the tagset is directly related to Wordnet synsets, the tagger returns partial word sense disambiguation. Furthermore, since(More)
In this paper we unify divergence minimization and statistical inference by means of convex duality. In the process of doing so, we prove that the dual of approximate maximum entropy estimation is maximum a posteriori estimation. Moreover, our treatment leads to stability and convergence bounds for many statistical learning problems. Finally, we show how an(More)
Many real-world classification tasks involve the prediction of multiple, inter-dependent class labels. A prototypical case of this sort deals with prediction of a sequence of labels for a sequence of observations. Such problems arise naturally in the context of annotating and segmenting observation sequences. This paper generalizes Gaussian Process(More)
The detection of prosodic characteristics is an important aspect of both speech synthesis and speech recognition. Correct placement of pitch accents aids in more natural sounding speech, while automatic detection of accents can contribute to better wordlevel recognition and better textual understanding. In this paper we investigate probabilistic,(More)
Discriminative models have been of interest in the NLP community in recent years. Previous research has shown that they are advantageous over generative models. In this paper, we investigate how different objective functions and optimization methods affect the performance of the classifiers in the discriminative learning framework. We focus on the sequence(More)